Новый алгоритм приблизил нас к полной симуляции мозга

Известный физик Ричард Фейнман однажды сказал: «Чего я не могу создать, я не понимаю. Узнавайте, как решить каждую проблему, которая уже была решена». Область нейронаук, которая все больше набирает обороты, приняла слова Фейнмана близко к сердцу. Для нейробиологов-теоретиков ключом к пониманию того, как работает интеллект, будет его воссоздание внутри компьютера. Нейрон за нейроном, они пытаются восстановить нервные процессы, которые дают начало мыслям, памяти или ощущениям. Имея цифровой мозг, ученые смогут проверить наши нынешние теории познания или исследовать параметры, которые приводят к нарушению работу мозга. Как полагает философ Ник Бостром из Оксфордского университета, имитация человеческого сознания является одним из самых многообещающих (и кропотливых) способов воссоздать — и превзойти — человеческую изобретательность.

Есть только одна проблема: наши компьютеры не могут справиться с параллельной природой наших мозгов. В полуторакилограммовом органе переплетены более 100 миллиардов нейронов и триллионы синапсов.

Даже самые мощные суперкомпьютеры сегодня отстают от этих масштабов: такие машины, как компьютер K из Передового института вычислительных наук в Кобе, Япония, могут обрабатывать не более 10% нейронов и их синапсов в коре.

Отчасти эта слабина связана с программным обеспечением. Чем быстрее становится вычислительная аппаратура, тем чаще алгоритмы становятся основой для полной симуляции мозга.

В этом месяце международная группа ученых полностью пересмотрела структуру популярного алгоритма симуляции, разработав мощную технологию, которая радикально сокращает время расчета и использование памяти. Новый алгоритм совместим с разного рода вычислительным оборудованием, от ноутбуков до суперкомпьютеров. Когда будущие суперкомпьютеры выйдут на сцену — а они будут в 10-100 раз мощнее современных — алгоритм сразу же будет обкатан на этих монстрах.

«Благодаря новой технологии мы можем использовать растущий параллелизм современных микропроцессоров намного лучше, чем раньше», говорит автор исследования Джейкоб Джордан из Исследовательского центра Юлиха в Германии. Работа была опубликована в Frontiers in Neuroinformatics.

«Это решающий шаг по направлению к созданию технологии для достижения симуляции сетей в масштабах мозга», пишут авторы.

Проблема масштаба

Современные суперкомпьютеры состоят из сотен тысяч поддоменов — узлов. Каждый узел содержит множество обрабатывающих центров, которые могут поддерживать горстку виртуальных нейронов и их соединений.

Основной проблемой в симуляции мозга является то, как эффективно представить миллионы нейронов и их связей в этих центрах обработки, чтобы сэкономить на времени и мощности.

Один из самых популярных алгоритмов симуляции — Memory-Usage Model. Прежде чем ученые симулируют изменения в своих нейронных сетях, им нужно сперва создать все эти нейроны и их соединения в виртуальном мозге с использованием алгоритма. Но вот в чем загвоздка: для каждой пары нейронов модель хранит всю информацию о связях в каждом узле, в котором находится принимающий нейрон — постсинаптический нейрон. Иными словами, пресинаптический нейрон, который посылает электрические импульсы, кричит в пустоту; алгоритм должен выяснить, откуда взялось конкретное сообщение, глядя исключительно на принимающий нейрон и данные, хранящиеся в его узле.

Новый алгоритм приблизил нас к полной симуляции мозга

Может показаться странным, но такая модель позволяет всем узлам выстроить свою часть работы в нейронной сети параллельно. Это резко сокращает время загрузки, что отчасти и объясняет популярность такого алгоритма.

Но как вы уже, возможно, догадались, появляются серьезные проблемы с масштабированием. Узел отправителя передает свое сообщение всем принимающим нейронным узлам. Это значит, что каждый принимающий узел должен сортировать каждое сообщение в сети — даже те, что предназначены для нейронов, расположенных в других узлах.

Это значит, что огромная часть сообщений отбрасывается в каждом узле, потому что конкретно в нем нет нейрона-адресата. Представьте, что почтовое отделение отправляет всех сотрудников страны относить нужное письмо. Сумасшедшая неэффективность, но именно так работает принцип модели использования памяти.

Проблема становится серьезнее по мере роста размера моделируемой нейронной сети. Каждому узлу необходимо выделить место для хранения памяти «адресной книги», в которой перечислены все нейронные жители и их связи. В масштабе миллиардов нейронов «адресная книга» становится огромным болотом памяти.

Размер или источник

Ученые взломали проблему, добавив в алгоритм… индекс.

Вот как это работает. Принимающие узлы содержат два блока информации. Первый — это база данных, в которой хранятся данные обо всех нейронах-отправителях, которые подключаются к узлам. Поскольку синапсы бывают нескольких размеров и типов, которые различаются по использованию памяти, эта база данных также сортирует свою информацию в зависимости от типов синапсов, сформированных нейронами в узле.

Эта настройка уже значительно отличается от предыдущих моделей, в которых данные о связях сортировались по входящему источнику нейронов, а не по типу синапса. Из-за этого узлу больше не придется поддерживать «адресную книгу».

«Размер структуры данных таким образом перестает зависеть от общего числа нейронов в сети», объясняют авторы.

Второй блок хранит данные об актуальных соединениях между получающим узлом и отправителях. Подобно первому блоку, он организует данные по типу синапса. В каждом типе синапса данные отделяются от источника (отправляющий нейрон).

Таким образом, этот алгоритм специфичнее своего предшественника: вместо того чтобы хранить все данные о соединении в каждом узле, принимающие узлы хранят только те данные, которые соответствуют виртуальным нейронам в них.

Ученые также предоставили каждому отправляющему нейрону целевую адресную книгу. Во время передачи данные разбиваются на куски, причем каждый фрагмент, содержащий код почтового индекса, направляет его на соответствующие принимающие узлы.

Быстрый и умный

Модификация сработала.

В ходе испытаний новый алгоритм показал себя много лучше своих предшественников с точки зрения масштабируемости и скорости. На суперкомпьютере JUQUEEN в Германии алгоритм работал на 55% быстрее предыдущих моделей на случайной нейронной сети, в основном благодаря своей прямолинейной схеме передачи данных.

В сети размером в полмиллиарда нейронов, например, симуляция одной секунды биологических событий заняла около пяти минут времени работы JUQUEEN на новом алгоритме. Модели-предшественники занимали в шесть раз больше времени.

Как и ожидалось, несколько испытаний масштабируемости показали, что новый алгоритм намного более эффективен в управлении крупными сетями, поскольку сокращает время обработки десятков тысяч трансферов данных в три раза.

«Сейчас основное внимание уделяется ускорению моделирования при наличии различных форм сетевой пластичности», — заключили авторы. С учетом этого, наконец, цифровой мозг человека может быть в пределах досягаемости.

Источник

Related Articles

Back to top button
Close
analisis mendalam rtp mahjong ways mengapa pola tumble tertentu sering memicu bonus beruntun momentum reel stabil indikator tersembunyi sebelum freespin besar di mahjong wins peta rotasi simbol bagaimana jalur scatter membentuk fase pre ledakan di game modern laporan harian pola spin turbo malam hari yang konsisten mengangkat frekuensi multiplier riset visual efek clean frame dan dense spin terhadap keputusan spin lanjutan pemain mahjong algoritma cerdas spin harian formula baru mengelola budget kecil agar cuan tetap berkelanjutan gold wild dan multiplier kombinasi mekanik yang mengubah probabilitas return realistis pemain jalur logis dari spin biasa ke pre burst studi kasus slide track pada seri mahjong terbaru output tinggi tanpa panik spin strategi mengatur ritme tumble untuk mengurangi dead spin beruntun korelasi jam 20 00 23 00 dengan pola scatter laporan observasi live dari meja mahjong ways era baru pola spin mengapa pemain berpengalaman beralih ke pendekatan probabilitas mikro simulasi ribuan spin data menarik tentang kapan reel konsisten berujung pada freespin premium ritme visual yang menipu bagaimana efek animasi membuat pemain gagal membaca sinyal pre fs dari repair rush ke clean frame perbedaan pola recovery setelah tumble buruk di mahjong ways 2 symbol route mapping teknik memetakan jalur simbol untuk mendeteksi potensi ledakan mendadak performa scatter ganda studi perbandingan antara pola jam pagi dan malam di game high volatility blueprint spin harian kerangka strategis mengatur turbo manual dan auto spin dalam satu sesi frekuensi mini tumble sebagai early warning kapan sebaiknya berhenti dan kapan menunggu fs mahjong 3 0 pergeseran meta dari kejar maxwin ke cuan konsisten berbasis pola data riset lapangan pemain casual seberapa jauh mereka mengikuti sinyal visual dibandingkan data rtp studi komparasi pola tumble mahjong ways menunjukkan anomali positif di server sore analisa fluktuasi scatter mengapa putaran turbo sering memicu fase pre burst riset algoritma korelasi antara simbol naga dan multiplier x10 yang sering terabaikan evaluasi siklus spin menemukan titik jenuh mesin sebelum reset menjadi gacor observasi lapangan pola pecahan emas mahjong ways membentuk tren kenaikan saldo signifikan hipotesis teruji teknik jeda spin ternyata mampu memancing trigger free game lebih cepat laporan teknis stabilitas server jam 21 00 berdampak langsung pada frekuensi wild menumpuk bedah mekanisme bagaimana sistem runtuhan mahjong wins 2 menciptakan momentum kemenangan beruntun arus lalu lintas padat di kota mengingatkan pada ritme cepat spin turbo mahjong ways fenomena langit cerah pasca badai simbolisasi visual saat scatter turun bertubi tubi gelombang laut pasang sore hari memiliki kemiripan pola dengan grafik rtp mahjong ways suara hujan deras di atap seng analogi bunyi koin big win yang dinanti pemain keteraturan barisan semut berjalan filosofi konsistensi bet kecil sebelum ledakan jackpot formula probabilitas mengatur modal minim untuk memancing algoritma pecah di menit awal mekanisme roda gigi jam kuno representasi akurat perputaran reel slot yang presisi rahasia navigasi menu fitur tersembunyi yang kerap digunakan pemain pro untuk reset pola strategi adaptasi cara membaca perubahan pola mahjong ways setelah maintenance rutin kalkulasi resiko menentukan kapan harus berhenti spin saat indikator rungkad mulai muncul optimalisasi akun baru mengapa id fresh sering mendapat prioritas scatter di 100 spin pertama transisi pola mengenali tanda perubahan dari fase sedot menuju fase muntah koin konsistensi reel 3 4 indikator paling stabil sebelum munculnya scatter beruntun riset mikro pattern mengapa mini wild sering menjadi pemicu awal freespin premium analisis slide momentum transisi halus dari tumble biasa ke pre burst di mahjong ways pola jam subuh 03 00 05 00 data menarik mengenai peningkatan frekuensi multiplier ritme spin lambat apakah efeknya benar benar meningkatkan probabilitas bonus fenomena quiet board ketika layar terlihat tenang namun menyimpan potensi tumble besar studi cluster scatter bagaimana 2 scatter bertahan lama sebelum akhirnya meledak jadi 3 korelasi wild bertingkat apakah pola aktivasi bertahap menjadi sinyal pre freespin observasi hari ini slide track berpola zig zag muncul lebih sering di jam malam simulasi 5000 spin pola turbo short burst yang konsisten mendekati fs premium mengurai dead calm fase tenang 10 20 spin yang justru mendahului ledakan bonus mapping rotasi simbol ketika reel atas jadi penentu arah tumble besar pola recovery setelah dead spin mengapa 2 wild awal sering menjadi titik kembali analisis visual efek animasi slow tumble sebagai tanda reel memasuki zona stabil scatter delay pattern ketika scatter muncul terlambat justru meningkatkan peluang fs pre burst marker tanda tanda halus dari pola reel 1 2 sebelum meledak tajam eksperimen spin manual vs auto mana yang lebih konsisten memicu mini tumble berulang laporan estetik clean frame versi putih muncul lebih sering saat rtp stabil jalur simbol menurun apakah ini menjadi fase awal aktivasi multiplier bertingkat rangkaian wild tipis ketika 1 2 wild acak justru menjadi fondasi bonus beruntun